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FOREWORD 
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succeeded Dr. Skelton as principal investigator. Mr. M.D. Ward did all of 
the digital computer programming, and Mr. C. R. Stone provided consulting 
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ABSTRACT 

This report is a technical summary of an investigation of the application 
of optimal control theory to the design of launch vehicle control systems. 
The goal of this study was the development of a practicxl design tech Y 
based on optimization theory for launch vehicle attitude control syst 

In a previous study Honeywell developed a stochastic constrained- 
response theory and demonstrated its applicability to the control of a rigid 
launch vehicle. 
a vehicle model which included three flexure modes and threecfuel-slosh 
modes as well a s  the rigid dynamics. 

This optimization theory was applied in the present study to 

The development of a practical design technology requires the develop- 
ment of a method for simplifying the optimal controller produced by the 
optimization theqry. 
must yield a controller which uses a practical sensor complement. 
method for choosing a set  of feedback sensors and sensor locations for the 
simplified controller must be developed concurrently with the simplification 
technique. The attempts to develop such techniques are described following 
descriptions of the mathematical model .employed in the study and the formu- 
lation of the optimization problem. 

For a practical controller this simplification technique 
Thus, a 

Formal methods for solving the controller simplification and sensor 
choice problems failed to give satisfactory results. 
of experiments performed to determine the significance of certain feedbacks 
of the optimal controller. 

This led to a series 

The experimentation is described followed by a description of a 
simplified controller designed on the basis of results from the series of 
experiments . 
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Quantitative results obtained during the course of the investigation a r e  
presented, followed by general conclusions and recommendations for further 
study. 

The appendices contain a, kliscw$sion of the distributed aerodynamic load- 
ing included in the model for this study, a display of matrix coefficients 
appearing in the model equations of motion, a derivation of the optimum 
fixed-form controller, and a display of gains for controllers derived from 
the optimization theory. 
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SECTION I 
INTRODUCTION AND SUMMARY 

The goal of this study was  the development of a practical design technology 
based on optimization theory for the launch vehicle attitude control problem. 
In a previous study, under contract NAS 8-20155, Honeywell developed a 
stochastic constrained-response theory and demonstrated its applicability to 
the control of a rigid booster. 
The present study is an extension of the earlier work in two respects. The 
vehicle model for the present study includes three flexure modes and three 
fuel-slosh modes as well as the rigid dynamics. 
the realm of simplification of the optimal controller produced by the above 
stochastic theory and, concurrently, the choice of feedback sensors and 
sensor locations. 

These results a r e  reported in reference 1. 

The second extension is in 

The booster control problem consists of designing a gimbal controller 
that compensates for undesired wind-induced bending, rotations, and transla- 
tions. 
bending moments within structural strength limits throughout the flight and 
provides satisfactory e r r o r s  in terminal drift,  drift rate, and angle of attack. 

The goal of the design is to produce a controller which maintains 

In reference 1 the incident winds and corresponding responses were 
described as random processes, and an event of mission failure was defined. 
The event of mission failure is that one o r  more responses fall outside pre- 
selected limits at burnout or  during the flight. The optimization problem is 
the minimization of an upper bound of the likelihood of occurrence of the 
event of mission failure. This problem was formulated in a manner that 
permitted its solution by means of known optimization theories. 
tion yields a linear, finite-time controller with time-varying gains. 

The solu- 

The Saturn V/Voyager with a 45-foot shroud length was taken a s  the study 
This model was chosen because a Load Relief 

d by the Aerospace Division of Honeywell 
vehicle for the present study. 
Study for this vehicle was perfor 
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under contract NAS 8-21171, and their reduced vehicle data, presented in 
reference 2, became available during the contract period. 

The response constraints assumed for this study are: 

0 

0 

0 

0 

0 

0 

0 

Magnitude of terminal drift = I z(160) I < 30,000 meters 

Magnitude of terminal drift ra te  = Ii(l60) I < 70 meters/second 

Magnitude of terminal angle of attack = la(l6O) I < 0.05934 radian 

Magnitude of gimbal angle = I B( t )  I < 0.0873 radian 

Magnitude of IB1 = IIBl(t) I < 9-  10 Newton meters 

Magnitude of IB2 = 1IB2(t) I < 1 . 7  = 10 Newton meters 

Magnitude of IB3 = IIB3(t) I < 5 10 Newton meters 

6 

6 

5 

where IB1 is the bending moment at the fuselage station 1541 inches forward 
of the gimbal station, IB2 is the bending moment at the fuselage station 
2747 inches forward of the gimbal station, and IB3 is the bending moment at 
the fuselage station 3256 inches forward of the gimbal station. The constant 
values used for the bending moment limits in  this study are lower bounds for 
the actual time-varying maximum allowable bending moments. 

The optimization is most easily applied to the case in which it is assumed 
that every desired vehicle and wind measurement can be made (i. e., the 
complete state can be measured). 

possible controller in terms of performance, but the controller is idealized 
and impractical. 
responses to be controlled and significant feedback responses. 
provide guides for simplification of the controller. 

Optimization for this case yields the best 

The performance of this controller indicates the significant 

These results 

Optimization with complete measurement capability was accomplished in 
eleven iterations using the concept of quadratic equivalence described in 
reference 1. The resulting controller, denoted a s  controller A, and its 

2 



performance were used to define analytical measures of quality for com- 
paring candidate sensor complements. When evaluated, the measures of 
quality developed were found to be unsatisfactory in that they yielded little 
insight and poor results. 
investigations to determine degradation in  performance caused by deleting the 
feedback of certain states from controller A was then begun. 

the results of these investigations, it was  found that the coefficient of attitude 
rate  in the bending moment expression w a s  in e r ro r ;  this caused the attitude 
rate  contributions to the bending moment response covariances to be 
unrealistically large. 
ficient by the negative of the nominal flight-path velocity had not been per- 
formed i n  the data preparation. 
to be overly sensitive to attitude rate.  The e r ro r  did not affect the vehicle 
state-transition equations. 

Controller simplification analysis based on 

In analyzing 

The e r r o r  was  that division of the attitude rate coef- 

This caused the bending moments computed 

When the e r r o r  was discovered, there were two possible approaches to  
obtain meaningful results for the corrected model. One approach was to 

evaluate the performance of controller A, repeating a l l  of the simplification 
results for the corrected model. 
optimization with complete measurement for the corrected model to obtain a 
new optimal controller, and then to perform simplification analyses for this 
new optimal controller. 
expenditure of money than did the first approach, since the computations 
involved in the first approach could utilize most of the computational results 
previously obtained for the incorrect model (since the state covariances were 
not affected by the e r ror ) .  
controller for the corrected model. 
tions of the first approach and to then proceed with the second approach as  
far as time and money permitted. 

The second approach was to proceed with 

The second approach required a much larger 

Fortunately, controller A proved to be a good 
It was decided to repeat the simplifica- 

For the corrected model the upper bound of the probability that mission 
failure would occur with controller A with complete measurement was 
8 
and an adjusted deterministic input. 

with no mean wind input and 8 .2  l o m 4  with the mean wind input 
The only response which significantly 
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contributed to this likelihood was IB3 during the time interval of high 
dynamic pressure. 

The simplification analyses indicated that controller A was  very sensitive 
to the high-frequency third flexure mode, wind, and load-distribution states. 
Deleting the fuel-slosh, fuel-slosh rate, drift,  and second flexure mode 
feedbacks from controller A caused only slight degradation in performance. 

These results led to the design of a simplified controller involving a fifth- 
order state estimator, and feedbacks of five accelerometer signals and the 
first and second integrals of these signals. 
ably good performance, yielding a value of 0.017 for the upper bound of the 
probability of mission failure with a mean wind input of zero, 

This controller exhibited reason- 

Following the second approach, the optimization with complete measure- 
ment was performed for the corrected model with the same optimization 
criterion as used for determining controller A. One subsequent iteration of 
the optimization criterion provided a controller, denoted’ as controller B, 
which exhibited much improved performance. The nature of this controller 
differed significantly from that of controller A. 
probability that mission failure would occur for controller B with complete 
measurement w a s  
wind input. The only response which significantly contributed to this likeli- 

hood w a s  the gimbal deflection near the terminal time. In comparison, the 
upper bound on the likelihood of IB3 exceeding its limits during the interval 
of high dynamic pressure was 2 
undoubtedly have reduced the likelihood of the gimbal angle exceeding its 
limit near the terminal time, but expenditure limitations prevented further 
iterations. However, there is a clear difference in the control characteris- 
tics of controller B and controller A. 

The upper bound of the 

with no mean wind input and 1 . 7  l o m 6  with the mean 

Subsequent iterations could 

In addition to the differences in the significant responses contributing to 

the probability of occurrence of mission failure, these controllers exhibited 
the following differences in standard deviations of states at maximum dynamic 
pressure. The standard deviation of attitude e r r o r  was  0.05 radian for con- 
troller B and 0.007 radian for controller A, indicating that controller A is a 
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tighter attitude eontroller. 
mode displacement was  11 centimeters for controller B and 4 centimeters 
for controller A, indicating that controller B permits somewhat more fuel 
sloshing than does controller A. 

The standard deviation of the first fuel-slosh 

The limited simplification analyses performed with controller B showed 
that deleting the fuel-slosh and drif t  feedbacks caused extreme degradation 
of the controller. The performance with these feedbacks deleted was  unsatis- 
factory after 75  seconds, and the probability of occurrence of mission failure 
w a s  essentially one (certainty). Thus it appears that the remarkable load- 
relief capability of controller B is achieved by significant utilization of the 
fuel-slosh feedbacks. Hence, measurement or estimation of the motion of the 
fuel could produce greater load - r elief capability. 

The mathematical model, problem formulation, controller simplification 
analyses, and quantitative results a r e  described in Sections 11, 111, IV and V. 
Conclusions and recommendations a r e  presented in Section VI. 

Differential equations describing the missile dynamics, the wind filter, 
and the distribution of aerodynamic loads a r e  presented in Section 11. 
Difference equations used to approximate the differential equations a r e  also 
given there. 

Section I11 is a brief summary of the formulation of the load-relief prob- 
lem as a stochastic minimization problem and the equivalent quadratic method 
used in its solution. Complete derivations of this material are presented in 
reference 1. 

The approaches to sensor choice and controller simplification a r e  
described in Section IV. 
a r e  summarized in Section V. 

The quantitative results generated during the study 

, 
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SECTION I1 
MATHEMATICAL MODEL 

The differential  equations used to  descr ibe  the m i s s i l e  dynamics,  the 
wind random process ,  and the distribution of the wind loads are presented.  
The difference equations approximation to the different ia l  equations are a l s o  
given. 

Missi le  Dynamics 

The Saturn V booster  with a Voyager payload was used as a s tudy vehicle. 
The payload configuration consisted of a cy l indr ica l  sec t ion  45 feet long. 
The model included rigid-body dynamics, t h ree  f lexure modes, t h r e e  fuel- 
s losh  modes and a f i r s t - o r d e r  actuator .  Engine-inertia effects w e r e  
ignored. 

Vehicle per turbat ion equations, a s u m m a r y  of data  supplied by MSFC, 

and reduced data computed by Honeywell's Aerospace Division are presented 
in re ference  2. 
in this study were:  

The par t icu lar  set of response  per turbat ion equations used 

3 Drift: Mg = (T-D)cp + RIB + d 7  a dx + (T-D) C Yil(x )qi 
i=l B 
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ith Flexure Mode: 

3 
+ M [ ~ ~ ) . i ' ( x s ) z s  -Yi (xs )  y s ,  

j j  j J 
S j = 1  j 

+ J d r  Yi(X) Yi'(x)qi - Yi(X) v ti] dx (2.3) 

th Fuel-Slosh Mode: 

(2.4) 

Actuator: + 11.9p  = 11.98, (2. 5) 

where& denotes the side force on the vehicle per unit length per unit angle da 
of attack 

which denotes the angle of attack at a station x. The other notation employed 
is defined under Nomenclature. 

The structural  bending moment at station xo was  assumed to be given by 

n N 

(2.7) 
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where 

MB' = R'[xo-x @ +1/ 2 -y 1 (X cg-x@)l 

MT = mass of section of vehicle from 0 to xo 

xT = center of gravity of section of vehicle from 0 to xo 

T IT = pitch moment of inertia of vehicle section from 0 to xo about x 

M(x) = mass density of vehicle 

A l l  integrals without indicated limits represent integrals over the length of 
the vehicle. 

Using equation (2.6) to eliminate a from equations (2.1) - (2.4) and (2.7) 
yielded 

.. (T-D+N) NB R' CP . 3 MSj .. NR 

j 
S z =  cp - -  + - @ - -  c p -  c -  z 

M MV M MV j = l  M 
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1 3  
= Ms f -  

In j = 1  j 

1 3  

V 
W 

T. N 

3 T i  . d t  
i=l I V I V 

YY YY 

dx - c -  q i  + - Jx (x-xcg) - (2.9) 

T .  
Nqi v i  . R' vi  . 
MiV MiV Mi MiV 

N '  

( q .  + 25 . W . i .  + w. q.) = - cp -- z +- Yi(XB)P - - cp 
2 .. 

1 1 1 1  1 1  

W 
V 

+i[ Mi Nqii q i  V V 

(2.10) 

I .. 
M** qi 

MG' 3 
k + M I 8  - -  6 + c Ib(x0) = M 'cp - - NE,' 

B V i=l T i  V a 

where  all newly introduced coefficients are defined in the Nomenclature.  
The in tegra ls  remain ing  i n  these  equations wil l  be discussed fur ther  under 
wind loads.  
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Wind Model 

The wind model used in this study was  essentially the same as the wind 
model described in reference 1. 

were changes in the mean wind and wind standard deviations. 
The only changes incorporated in this study 

The wind filter eduations employed were taken from reference 1; they 
a r e  

W 
- 

lid 
w + OV 

v = v  
W 

(2.12) 

(2.13) 

where 6 is the vertical component of vehicle velocity and q is a unity white 
noise input. 

In the study reported in reference 1, the mean wind and wind standard 
In this study'G;1 deviations were smoothed to have zero values at burnout. 

was  smoothed to be zero for t > 130 seconds and ov was assumed constant 
for t - > 1 2 5  seconds. 

u1 - 

Wind Loads 

A s  discussed in reference 1, an anomaly ar ises  in the expression for 
the time-derivative of the bending moment i f  the integral in equation (2.11) 
is approximated by assuming that vu is constant over the length of the vehicle 

M- ' u 
w' 

and the above wind model is used. 

and hence 

For, then, Ib(xo) contains a t e r m 7  V 

where+ = F  + b  w +av d Ma' Ib(xo) wil l  contain a term 
W u1 w w vw 

(hc3x + cl,h 7). Thus the wind shear, 
W' 

contain white noise, and their standard deviations a r e  infinite. 
and the bending moment ratio 
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Removal of the white noise contribution from the wind shear would require 
construction of a different wind filter. 
tion was  not adequate. 
rate can be removed by replacing the constant wind approximation with a 
distributed wind load approximation. Such an  approximation was described 
in reference 1. Essentially the same approximation was  used in this study. 
That is, integrals of the form 

Wind shear data for such a construc- 
The white noise contribution to the bending moment 

v ~ ( x s  t, dT(x, t) 

V (t) da 
f(x, t) dx S 

were approximated by an  expression of the form 

where a(t) and b(t) were relatively slowly-varying time functions, and x,(t) 
and x2(t) satisfied 

V Vw (t) 
x = - -  x1 +- 

x1 x1 

x2 

1 

- 4v 6V 5 
- -  x3 - -v,(t) - 

x2 
x2 x 2  - -  

x2 

V 
x2 + - = -  

x2 x2 
x 3  

(2.14)  

(2.15) 

(2.16) 

The input vw(t) in  (2.14) - (2.16) denotes the wind at the nose of the vehicle. 
The values of X1 and X2 were chosen to be 160/9 and 200/3 respectively. 
These values are 2/3 of the values used in the previous study, since the 
vehicle of that study was approximately one and one-half times as  long as the 
Saturn V / Voyager. 
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The integrals in equations (2.8), (2.9), (2.10) and (2.11) for the three 
bending moment stations considered were  approximated as 

dx = a  x + a 2  x2 dT J x  v 1 1  

d x = a  x + a  x vW 
(x-xcg) y 3 1  4 2  

3+2i x1 + a4+2i x2 dx = a d r  J Yi(X) 7 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The derivation of the values of the ai(t) used is given in Appendix A .  

State Equations (Continuous) 

The quadratic theory used in this study requires that vehicle and wind 
filter equations be expressed as first-order vector differential equations of 
the form 

(2.21) 

and responses to be controlled be expressed as 

To obtain the state and response equations in this form, let x be the vector . .  [b, 2, rll’ i 2 ’  i3,  kS1’ zs2, zs3,  9 ,  z, 71, ‘la, rl3, ZS1’ zs2, Z S 3 ’  P,  w, x, 

xl, x2’ x3IT, let u = [3,, and let r = [e, 6 ,  IB1, iBl,  IB2, iB2, IB3, iB3, 

1 2  



a, CP, z, CP, Z I T ,  where IBI = 

(3256 in.). 
be combined to  yield 

(1 541 in. 1, IB2 = Ib (2747 in.) and IB3 = 

With this notation equations (2.4) - (2.6) and (2.8) - (2.20) may 

A& = B X + C U ' + D ~ + E T ~  (2.23) 

N 
N 

r = H ~ X + H  2 2 + c u + E y  Lbl (2. 24) 

T where 'F = k3, i, IB1, IB2, IB3, a, 6, 2, cp,  z ]  . 
are displayed in Appendix B. 
the state equations may be expressed in the form (2.21).  It is shown in 

The coefficient matrices 
By defining F = A-lB, G1 = A'lC, G2 = A-lE, 

N N 

Appendix u B that H2A-1C = H2A-lE = 0 so that y = (H1 + H2A-lB)x + Cu + ETw. 
Letting H1 = H1 + H2A-'B and defining a matrix J such that Jy = [IBl, IB2, 
IB3IT, the bending moment rates are given by 

N 

It is also shown in Appendix B that JHIA-'D = 0, s o  that the response 
equations have the desired form of (2 .22)  with H(t), Dl(t) and D2(t) appro- 
priately defined. 

The matrix manipulations required to obtain the literal elements of the 
coefficient matrices in  (2.21) and (2.22)  were too complicated to be per- 
formed. 
data. 
seconds on the interval from zero to 160 seconds. 
ciated with the state equations and a portion of the response vector, r, were 
straightforward. 
involved the time derivative of JE,. These were computed using the average 
of first divided differences for adjacent 5-second intervals. 

The manipulations were therefore performed with the numerical 
The numerical computatios were carried out for each multiple of 5 

The computations asso- 
N 

The coefficients in the bending moment rate expressions 
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The end result was  a set of state equations and response equations of the 
form (2.21) and (2.22) with the time-varying coefficients defined numerically 
at 5-second intervals. 

State Equations (Discrete) 

Difference approximations. - - For  computational purposes the differ- 
ential equations (2.21) were  approximated by difference equations. 
difference equations w e r e  derived with two constraints in mind. 
constraints w e r e  based on the desire to achieve reasonable computation time 
for the optimization program and at the same time maintain a sufficiently 
accurate approximation of the differential equations. 

The 
Both of the 

The simplest difference approximation to equation (2.21)  is 

x[ (k+l)Atl 
= + F ( k A t ~  x (kAt) + G1 (kAt)u(kAt) + G2(kAt)q(kAt) 

A t  

(2.25) 

This approximation would be sufficiently accurate i f  A t  w a s  chosen sufficiently 
small. 
computation time it is desirable to choose A t  to be as large as possible. For 
a given value of A t  a more accurate approximation to equation (2.2 1) is given 
by the sample-data form 

But the computation time is inversely proportional to A t ;  to reduce 

rc 

x[:(k+l)At] = e AtF(kAt) {x(kAt)+F-'(kAt) -AtF(kAt)l [c,(kAt)u(kAt) 

(2.26)  
J 

This form is approximate in that the various coefficients are not constant over 
the A t  intervals, and the control u(t) is continuous and not piecewise constant. 
The major disadvantage of equation (2.26) is that almost all of the elements of 
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the coefficient matrices a r e  nonzero, whereas in equation (2.2 5) the majority 
of the elements of the coefficient matrices a r e  zero. Computation time 
increases a t  least linearly with the number of nonzero elements. A com- 
promise was made between these approximations by incorporating sample- 
data approximations for the high-frequency dynamics and the simple differ- 

ence form for the low-frequency dynamics of the system. 

Preliminary considerations indicated that a value of A t  = 0.02 second 
would yield reasonable computation time and provide sufficient accuracy. 
Initially, the simple difference approximation for the first sixteen scalar 
equations and the sample-data approximation for  the last six scalar 
equations were implemented. Recall that the seventeenth state is gimbal 
deflection, the eighteenth and nineteenth a r e  the wind states and the final 
three a re  states associated with load distribution. 
initial set  of difference equations was found not to be adequate, so  sample- 
data approximations for the flexure modes were incorporated. This gave a 
satisfactory approximation for the computation of an optimal controller. 

The accuracy of this 

The time-varying coefficients were obtained by linear interpolation 
between the 5-second data points. 

The gimbal actuator. -- It was shown in reference 1 that the results of 
optimization a r e  not dependent on the particular first-order dynamics 
assumed for  the actuator in the continuous case. If the simple difference 

approximation to the actuator equation is used, this result carr ies  over to 
the discrete case. 
to the actuator equation (2. 5) was not adequate, so the sample-data 
approximation was used. 
dependent on the actuator dynamics, and hence the controller obtained 
should truly be considered a sampled-data controller. 

With A t  = 0.02, the simple difference approximation 

In this case the optimization results a r e  
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SECTION 111 
OPTIMIZATION: MATHEMATICAL FORMULATION 

The formulation of the load-relief problem as a stochastic minimization 
problem and the equivalent quadratic method for its solution presented in 
reference 1 a re  briefly summarized in this section. 

Formulation 

The load-relief problem is essentially one of ensuring that missile 
response a r e  within prescribed limits. 
throughout the booster flight, 0 < t < T and the others must be met only at  
burnout, t = T. be the 

deviations from the ideal values of the booster responses which a r e  to meet 
constraints a t  t = T, and let ri(t), i = m1 + 1, . . . , m2, be the deviations 
from the ideal values of the responses which a r e  to meet constraints on 
0 < t < T. be positive constants and let yi(t), 1' 
i = m -l- 1,. . ., m 
represents the prescribed limit for ri. 

Some of the limits must be met 

For a given wind input let ri(t), i = 1, 2, . ., m 1' 

Let yi, i = 1, 2 , .  . ,, m 
be positive functions defined on 0 < t T such that y i  1 2' 

Let ai denote the event 

and a. denote the event 
1 

for i = 1, 2 , .  . ., m 
the condition 

Let bi(j), i = m f 1,.  . ., m2, denote the event that 1' 1 

is met exactly j times in the interval 0 - -  < t < T. Then the event of mission 

success is the event that all of the events al, "2, * * * a  aml> bml+l (O), . *, 
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bm ( 0 )  occur. The probability of mission success is the joint probability 
b PCal, . . . J 

failure which w e  shall denote by J is 

2 
( O l J * * * J  bm2 (0 )  3 , and the probability of mission ml+l 

b (O), . j b (0)I 
m2 m ' ml+l J = 1 - P[a;, ..., a 

1 
(3.4) 

Minimizing J would be a meaningful basis for control design, but no analytical 
expression for J is known, even for Gaussian processes. 

It is proven in reference 1 that 

m2 m2 
J* = P(Zi) + E(.3 

i=l i=m 1 +1 
(3.  5 )  

is an upper bound for J, ( i .e. ,  J* > J), where E is the expected number 
[O, TI , i. e .  of occasions that ri(t) exceeds its limit in the 

E p i }  = ? j Prbi(j)]  
j =o 

( 3 . 6 )  

Analytical expressions for P(3i) and E N a re  derived in reference 1 under 
the assumption that the response ri(t) are nonstationary Gaussian processes. 

The functional, J*, is chosen as  the performance index to be minimized and 
the control ~ ( t )  is required to be a linear transformation of measured 
responses m(t). 

(3 

Thus the optimal control problem is: 

Given the system described by equations (2.21)  and (2.22) ,  find 
the linear controller (the linear transformation of measured 
responses) that minimizes J*. 

The linear transformation of measured responses may be restricted as 
desired to include only current responses, present and past responses, or 
only past responses, and by defining the particular measurements available. 
For all formulations where the present state can be completely measured, 
the optimal linear transformation can be reduced to 
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u = K(t)x(t) (3.7) 

in which case one can search for K(t) directly. 

Method of Solution 

The functional J* to be minimized may be written in the form 

where S ( t )  is the response covariance matrix defined by 

R(t) is the mean-response product matrix defined by 

(3.10) 

and r ( t )  is the vector of mean responses defined by 

T(t) = E{r(t)} (3.11) 

1 

The prime as a superscript indicates transposition; i.e., x 
of x. 

= the transpose 

The method for solving the optimization problem involves iteratively 
solving optimization problems with performance functionals which are 
quadratic in S(t) and R(t) of the form 

0 
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where TR indicates the trace and Q and V are non-negative definite symmetric 
matrices. 
minimizing J** is equivalent to minimizing J* in the sense that the same 
linear control minimizes each functional. A necessary condition for this 
equivalence is that. 

The aim of the iterations is to obtain such Q and V matrices that 

(3.13) 

where the partial derivatives are evaluated at So and Ro, the response covari- 
ance and mean-response product matrices produced by the optimal controller 
for J**. 

An iteration procedure to attain the condition (3.13) is: 

(a) Choose values for Q and V 

(b) Find the minimizing control for J** by application of the quadratic 
theories 

(c) Compute the corresponding R and S matrices 

3f 3f 
3s 3R (d) Compute the matrices - and - and compare with the chosen 

Q and V matrices 

(e) Rechoose Q and V and repeat (b), (c) and (d) until the condition 
(3.13) is satisfied 

This iterative process was not completely automated in that the choice of new 
Q and V matrices was  based on the response behavior previously obtained as 
well  as the e r r o r  in satisfying condition (3.13). 

A major simplification which was found to be satisfactory in the previous 
This simplifi- study reported in  reference 1 was incorporated in this study. 

cation consisted of setting 
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Satisfactory mean responses were obtained and no attempt was  made to match 
V to 3f/aR. 

The Quadratic Problem 

The iteration procedure described above involves the solution of a quadratic 
problem. 
for the difference equation formulation is presented below. 

The solution of this problem as given in  Appendix G of reference 1 

Suppose the system is given as 

m(n) = H2(n)x(n) + s(n) 

where m(n) is a vector of sensor outputs, and s(n) is a white noise input 

6.. 11 = 1, bij  = 0 if i # j 

and N = (ht)-lT and the common (incomplete) notation suppressing A t  in the 
arguments is used. 
tion of present and past measured responses 

The optimization problem is to find the linear transforma- 
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n 

i=o 
u(n) = L(n, i) m(i) 

that minimizes the quadratic functional 

N-1  

n=O 
J** = TR{Q(N)[S(N) + R(N)] + A t  Q(n)[S(n) + R(n)]} 

where R(n) = r (n)  r(n)l, r (n)  = E{r(n)} and S(n) = E{[r(n) - F(n)][r(n) - r(n)];). 

Assuming that Q(n) is symmetric and non-negative definite for n = 0, 1 , . . , 
N, and [D,(n)]' Q(n) Dl(n) is positive for n < N and Q(N) D1(N) = 0 (all true in 
the present problem), the solution is 

u(n) = K(n)?(n) + f(n) 

where k(n) is the conditional estimate of the state 

and K(n) and f(n) satisfy 

f(n) = - [ BlfP(n+l)Bl+AtD1 (n)'Q(n)D1 (n)]-l { Bll[ g(n+l) 
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with P(N) = H1(N)'Q(N)H1 (N) and g(N) = H1(N)1Q(N)D2(N)~,II(N). The solution 
to the state estimation problem is 

- 
;i(n) - x(n) = 'Z(n) 

- 
x(n+l) = [ A h )  + B1(n)K(n)]E(n) + B2(n)Tw(n) + Bl(n)f(n) 

- 
where X(n) is the a priori mean state, x(n) = E , and L(n) satisfies 

A A 

with P(0) = X ( 0 ) .  The matrix P(n) is the covariance matrix of the estimation 
error,  x(n) - Ei(n). 
mization problem. 96 

This completes the description of the solution to the mini- 

The state covariance matrix 

X(n) = E{[x(n) - x(n)] [x(n) - H(n)l;) 

satisfies the difference equation 

X(n+l) = [A(n)+BIK(n)] [X(n) - &n)] [A(n)+BIK(n)] I 

+ A(n);(n)A(n)' + (At)-'B3(n)Wl(n)B3(n)I 

A 

*As discussed in Section IV, the L(n) and P(n+l) equations may be simplified 
considerably from the form presented here when current values of portions 
of the state x(t) can be measured perfectly. 
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The response covariance matrix, S(n) = E @(n) - r (n)]  [r(n) - T(n)]l} , may be 
obtained as  follows: 

For the special case in which it is assumed that the complete state can be 
measured exactly, m(n) = x(n) and the above results a r e  simplified since 
%n) = x(n) and P(n) = 0. 

A 

SECTION IV 
SENSOR CHOICE AND CONTROLLER SIMPLIFICATION 

Optimization with complete measurement capability provides a very good 
controller with respect to performance, but complete measurement of the state 
is generally impractical and often impossible. 
complete measurement capability is a standard for comparison of controller 

Thus the optimal control with 
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performance. It also serves as a starting point for the synthesis of a practical 
controller and may contain information which can be used to select the best 
sensor complement for controller performance from a set  of possible sensor 
complements. 

The sensor choice and controller simplification problems, the general 
relationships concerning practicable controllers, the analytical measures of 
quality of sensor complements developed, the controller simplification analy- 
s e s  performed, and the simplified controller designed in the study a re  
described in this section. 
a r e  presented together with the numerical results obtained during optimiza- 
tion in Section V, and the overall conclusions a re  given in Section VI. 

The numerical results pertaining to these topics 

Two analytical measures of quality of sensor complements were developed 
which were based on the optimal controller with complete measurement 
capability. These measures of quality did not prove to be satisfactory when 
applied to the study vehicle with controller A. 
inadequacy of these measures of quality was attributed to the fact that they fail 

to properly emphasize the states which a r e  significant feedbacks. 
investigation of controller simplification focused on determining the significant 
degrees of freedom as a means of identifying the states which would have to be 
measured and/or estimated. This investigation indicated that for controller A 

the states associated with the load-distribution and wind filter were significant, 
but the drift  and states associated with fuel sloshing were not significant. 
Incorporating the wind and load-distribution states in the controller required 
the synthesis of an estimator. Such an estimator is described at the end of 
this section. 

The major cause of the 

Thus, the 

General Considerations 

The fundamental goal of this study was the development of analytical tech- 
niques which make practicable the design of controllers for launch vehicles by 
application of optimal control theory. There were several  approaches which 
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could be taken to reach this goal. The approach chosen for this study was to 
use optimal control theory to find the optimal linear controller with no con- 

straints on the available feedback signals o r  simplicity of the controller. If 
necessary, fictitious sensors were assumed to exist. Then it was intended to 
develop a technique, which utilized the optimal controller, to find the best 
sensor complement from a set  of such complements in terms of controller 
capability for linear controllers constrained to feedback only the outputs from 
the sensor complements and signals obtained from simple filters used in con- 
junction with the sensor complements, This second stage of the approach was 
called the sensor choice and controller simplification problem. 

, 

The optimal controller, assuming complete measurement capability, may 
be written as 

u(x, t) = Ko(t)x + P(t) (4*1) 

where u(x, t) is the input to the actuator, Ko(t) is a gain (row) vector, and 
fO(t) is a deterministic input. Given any sensor complement, the sensor 
outputs can be arranged as a measurement (column) vector, m(t) which may 
be written as 

m(x, t) = M(t)x (4.2) 

where the dimension of m(t) and the values of the elements of the matrix R/I(t) 
depend upon the given sensor complement. A controller consisting of a 
deterministic input plus linear feedback of the measurement vector may be 
expressed as 

U(X, t) = K(t)M(t)x + f(t) (4.3) 

where K(t) is a gain (row) vector, the dimension of K(t) being the same a s  the 
dimension of m(t). 
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If for some sensor complement it is the case that Ko(t) can be written as a 
linear combination of the rows of M(t), then the controller given by equation 
(4.3) can be made to be identical to the optimal controller given by equation 
(4.1) by choosing f(t) = P( t )  and K(t) properly. 
consider the general properties of a measurement vector o r  sensor comple- 
ment in terms of the algebraic properties of the corresponding matrix M(t). 

Thus, it is appropriate to 

Consider a sensor complement consisting of outputs of linear accelerom- 
eters, angular accelerometers, integrals of the angular accelerometer 
signals, integrals of linear combinations of the linear accelerometer signals 
and integrals of the angular accelerometer signals, and a measurement of 
gimbal angle, 
complement. The first is that the columns of the associated matrix, M(t), 
corresponding to the wind state (II, the wind-shear state x, and the internal 
load-distribution state x3 a re  zero; that is, these states a r e  not directly 
measurable. The second is that i f  the complement includes angular accelerom- 
eters located at three distinct stations along the vehicle and linear accelerom- 
eters located at two of these stations, then generally, assuming knowledge of 
the mode shapes and center of gravity, the states associated with rigid-body 
and flexure degrees of freedom can be independently measured, and inclusion 
of integrals of other accelerometer outputs is redundant. 
be obtained as follows: 

Two general statements can be made concerning such a sensor 

These results may 

The output of a lateral accelerometer located at xA is given by 

and the output of an angular accelerometer located at x is given by A 
3 

i=l 

.. 
= $ + y Yit(XA)Ki T A  (4. 5 )  

From equation (2.23) and the explicit form of the B matrix displayed in 
Appendix B it can be observed that the states, w, x and x3, do not enter into 
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.. .. 
the z , cp, and Ki equations. Let ml, m2, and m3 denote the integrals of the 
outputs of angular accelerometers at stations xA1, xA2, and x 
Let mi+5 denote the integral of mi for i = 1, 2, 3. For i = 4, 5 let mi denote 
the integral of the sum of the output of a lateral accelerometer at station 

respectively. A3 

Then 

"1 

m2 

m3 

m4 

- - ~: "5 

The coefficient matrix in equation (4. 6) is generally nonsingular, and hence 
the components b, z, rli, of the state vector may be obtained from the signals 
m m2, m3, m4, and m5 assuming knowledge of the mode shape, axial 
acceleration = (T-D)/M, and the center of gravity. For the study vehicle the 
coefficient matrix in equation (4.6) is nonsingular for t > 0 with xA1, xA2 

. .  
1' 

and x 
Knowing the components, fp, z, q. of the state vector, their integrals cp, z, 

taken to be stations 1541, 2686 and 3240 inches respectively. 
A3 0 .  

T i  1 
may be obtained. 
sloshing, the wind filter, and the load distribution can be measured directly. 

Thus, in this case all states except those associated with fuel 

If a lateral accelerometer located at station xA1 is added to the above 
sensor complement it is redundant in  that the sum of the integral of this out- 

put and [ (T-D) /M3m6 is linearly dependent on ml, m2, m3, m4 and m 5' 

This algebraic analysis shows that complete measurement of the state is 
not possible and hence that there is no hope of matching the controller of 
equation (4.3) to that of equation (4.1) i f  the states that cannot be measured 
significantly contribute to the optimal controller. 
lowing approach to the fundamental goal might have been more profitable. 

This suggests that the fol- 
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Solve the optimal control problem with the controller constrained to utilize 
only directly measurable states and estimates of those states which cannot be 
measured directly. Then, with this controller as  a starting point, the sensor 
choice and controller simplification problems could be treated. There is addi- 
tional complexity in this approach since solving the associated optimal control 
problem involves the iterative solution of a two-point boundary value problem 
within each iteration of weight adjustment to attain quadratic equivalence. 
However, it is felt that this approach holds promise because the controller 
upon which the simplification is based would have a behavior more closely 
related to the controllers utilizing realizable sensor complements. 

This difference in behavior between the optimal controller with complete 
measurement and the optimal controller with partial measurement is believed 
to be the cause of the inadequacy of the first measure of quality described 
below. 

Analytical Measures of Quality 

The first measure of quality is based on an approximation to the optimal 
controller with a specified se t  of observation vectors. 
consists of replacing the Riccati and state covariance matrices for the fixed- 
form control problem, described below, by the corresponding matrices for the 
control problem with complete measurement. 

The approximation 

The second measure of quality is based on the following observation. 
optimal control input is a deterministic input plus the scalar product of the 
gain vector times the state vector. A sensor output is the scalar product of a n  
observation vector times the state vector. If the gain vector lies in  the sub- 
space spanned by the observation vectors associated with some sensor comple- 
ment, then the optimal controller may be attained with that sensor complement. 
Thus a measure of quality may be defined in terms of the accuracy of approxi- 
mating the optimal gain vector by a linear combination of observation vectors. 

The 
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The first measure of quality. 
assumed to be in the form 

g(t) = F(t)x(t) + Gl(t)u(t) + 

r(t) = H(t)x(t) + Dl(t)u(t) + 

m(t) = M(t)x(t) 

-- The vehicle equations of motion are 

(4.7) 

(4.8) 

(4.9) 

where x(t) denotes the state vector, r(t) denotes the response vector, u(t) 
denotes the scalar control input, q(t) denotes a scalar Gaussian white noise 
input, V (t) denotes the scalar mean wind input and m(t) denotes the vector of 
sensor outputs. In the following discussion the dependence on t wil l  be sup- 
pressed, and it wi l l  be assumed that Tu = 0. 

W 

The control problem can be formulated as  the following fixed-form optimi- 
zation problem. Choose the (row) vector K such that with u = K Mx the func- 
tional 

is minimized, where TR(QS) indicates the trace of the matrix QS and S 
response covariance matrix. In this formulation the matrix M denotes 
observation matrix. 
the sensor complement chosen. Complete measurement capability is equivalent 
to M being nonsingular (the number of measurements m would equal the 
dimension of x) in which case, without loss of generality, M may be assumed 
to be the identity. 
independent of M. 

The values of the elements and the rank of M depend on 

The positive semidefinite matrix, Q, is assumed to be 

(4.10) 

is the 
the 

Assuming DIIQD1 to be nonsingular for 0 5  t < T, the solution to the opti- 
mization problem is* 

*This solution is derived in Appendix C .  
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K = -(D1'QD1)-l [D,'QH - G l ' P ]  XM' (MXMI)-' (4.11) 

-I? = ( F  + GIKM)' P + P ( F  + GIKM) + (H + DIKM)' Q(H + DIKM) (4.12) 

k = ( F  + GIKM)X + X(F + GIKM)I + G2NG2' (4.13) 

P(T) = HI(T) Q(T) H(T), X(0) given (4.14) 

where X is the state covariance matrix and N is the variance of q. 

It may be seen from the above equations that, i f  M is nonsingular, the 
solution is independent of X. 
however, the solution depends on X and involves a two-point boundary value 
problem.* Thus the simplest problem to solve is the one in which M is non- 
singular. Furthermore, defining J[M, Ko(M)] to be 

If the rank of M is less  than the dimension of x, 

(4.15) 

the minimum value of J[M, Ko(M)] is obtained with M nonsingular. 
problem with M taken to be the identity provides ideal values of J[M, Ko(M)], 
K, P, X, and S, which wil l  be denoted by Jo, KO, Po, Xo, and So. 

Solving the 

Let the gain vector, K*, be defined a s  

K* = -(Dl1QD1)-' [DllQG + G1lPo]XoM~(MXoM1)-l 

= K O X O M ~  (MxOM')-~ (4.16) 

Then the measure of quality of the sensor complement corresponding to the 
observation matrix M is defined to be J(M, K*). This measure of quality is an 

%I the case where the rank of M is less than the dimension of x, the solution 
may be expressed in the form u(t, x(t)) = L(t)g(t) where L(t) is a linear time- 
varying row vector and 2(t) is the least-mean-square-error estimate of x(t). 
This assertion is proved in Appendix C .  
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approximation to the exact measure of quality of the sensor complement 
J[ M, Ko(M)]. It is difficult to estimate the accuracy of the approximation, 
but clearly the relation J(M,K*) - > JIM,Ko(M)] - > Jo holds. Also, if M is 
nonsingular, then J(M,K*) = Jo. It was conjectured that the approximation 
would be adequate for comparing the quality of different sensor complements, 
However, as described below and shown in Section V, this did not prove to be 
the case for the study vehicle. 

A very simple example for which analytical solutions may be obtained is 
presented to demonstrate the nature of the measure of quality defined above. 

The state and response vectors are assumed to be two-dimensional, the 
system is assumed to be autonomous, and the performance functional is 
assumed to be the integral over the infinite interval of rlQr. 
consider the system represented by: 

Specifically, 

For this example the equations defining the optimal control a r e  

K = -[I -+ p12, 1 + pZ21 XM'(MXM!)-~ 

0 = (F+GIKM)' P + P(F+GIKM) + (H+DIKM)' Q(H+DIKM) 

0 = (F+GIKM)X +X(F+GIKM)' + I i i 1 
Taking M to be the identity yields 
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The solution to these equations is 

K10 = -2.5, KZ0 = -2  

and the corresponding value of J is Jo = 

c 

0 

1+K2 +Ell: "'3 
12 x22 

"'3 + 
K2° 

- 
1 

1 
- 

= 0.875 0 -  0 -  X 11 - 1.15, X12 - -0.5, x22 

8, and the corresponding S is 

1.15 -1.225 
so = 1-1.225 1.9625 

Now consider the case in which M = [m m2] and K is a scalar. Then 1' 
the equations defining the optimal control are 
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1 l+mlK 5.25 0 0 

+ 1 + m 2 ~  ~ ~ [+mlK l+m2K] 

m2K ' ] ~ l  1 2  x l ~  x2 2 x l ~  x2 2 

The solution to these equations is 

- 

8mlm2K p11 - 

-[ 8mlK+25+4m12K2] 

8mlK 
- - 

P12 

- r8mlrn2K2-2 5+4mlK(m22K2- l -mlK)]  
- 

8m m K2 1 2  
p22 - 

-r2m2K-l+mlK-m2 2 2  K ] 

- - 
2m m ~2 11 x 

1 2  

mlK-1  

x1 2 ' x22 2m2K 
- - - - -- 1 

with Ko(M) a real  root of the equation 

'I 1 

4ml(ml+m2) 2 3  K - (21ml+50m2) K + 50 = 0 
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Thus to obtain the exact solution it is necessary to solve for the real  root of 
the above cubic equation. 

The value of K* is readily obtained, in the case being considered, as 

0 2 0)-1 
K* = r-2.5, -21 xo [~~ (ml Xl1 0+2m 1 m 2 x 1 2  +m2 x22 

-1. 875ml-0. 5m2 
- - 

1. 15m12-m m +O. 875m2 2 
1 2  

Then J(M, K*) may be computed for any (ml, m2) by evaluating K* and the 
express ion 

2 l+m K*2-2m2K* - mlK* 
J(M,K+) = [: + (1 + m l K * ) ~  ( 2mlm2K*2 

-11.325 - - -- and J(M, K*) = 8. Of course, 22.75 2 For m1 = 5 and m2 = 4, K:g = 

in  this case mlK:g and m2KJ6 = K so that X = Xo and S = So. 2 

Numerical results were obtained for  the following three other cases:  

Case I: m1 = m2 = 1 

Case 11: ml = 3, m 2 

Case III: m1 = 1, m2 = 0.633. 

= 4 

For this example the observation matrix M is essentially a function of only one 

parameter, which may be taken to be 8 = tan- (m2 / m1 ) . The optimal 8 is 
go = tan-l(O. 8). Case I corresponds to 4 = tan- l ( l )  and Case I11 w a s  chosen I 
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to correspond to g 

e T  > 8'. The results a r e  as follows: 
= fl0 - (eI - eo) .  Case I1 corresponds to qu: = tan'1(4/3) > 111 

Case K* - 
I '  -2 .32 

11 -0.617 
I11 -2.53 

J(M,K*) K JW, Ko(M)l opt 
8.18 -2.40 8.16 
9.07 -0.75 8.74 
8.21 -2.60 8.17 

m results indicate that J(M, K* I is a good approximation of JTM, Ko(M ] i f  
the observation vector (ml, m2) is near the optimal observation vector (5, 4) in 
the sense that 16 - 8, I is small. 
J(M, K*) properly distinguishes the quality of observation for control. 

Furthermore, the measure of quality 

The second measure of quality, -- The feedback gains of the optimal con- 
troller with complete measurement a r e  conveniently represented as a time- 
varying vector Ko(t). 
the property that there exists a vector, K(t), such that 

If a sensor complement with observation matrix M(t) has 

K(t) M(t) = Ko(t) (4.17) 

Then this sensor complement is equivalent in terms of control performance to 
complete measurement, In general, sensor complements a r e  of such a nature 
that equation (4.17) cannot be satisfied for  any K(t). Thus a mathematically 
appealing measure of quality of a sensor complement is the minimum e r ro r  that 
can be achieved with the given sensor complement in satisfying equation (4.17). 
Of course there a r e  many ways of defining the error ,  and one such definition is 
the weighted least- square -e r ror  , 

where W(t) is a non-negative definite symmetric matrix. With this type of 

e r r o r  definition it is a simple matter to compute the measure of quality 

[M(t)] = [i( t ;W, M)M(t) - Ko(t)]W(t)[k(t;W, M)M(t) - K0(t) l1  (4. 19) Jw (t) 
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where 

(4.20) 

and it is assumed that W(t) is chosen so that (MWM') is nonsingular. 
measure of quality has the attribute of ease of computation. 
ciency is that it is an indirect measure of controller performance. 
measure of quality can be used only to discern gross differences in sensor 
complements. 

This 
Its major defi- 

Hence this 

A sensor complement consisting of linear accelerometers, angular accel- 
erometers, and rate gyros located at stations 1541 and 2686 inches, an angular 
accelerometer, a rate gyro, an attitude gyro and the integral of a linear 
accelerometer located at station 3240 inches, and the gimbal-angle pickoff 
w a s  chosen to evaluate the acceptability of the measures of quality defined 
above. For this sensor complement the first measure of quality and the gains 
associated with the second measure of quality with W(t) taken to be the identity 
were computed. The first measure of quality defined a controller u'F = K*Mx 
and the second defined a controller il = h x .  Response covariances for these 
controllers w e r e  computed; the results were catastrophic. 
covariances for u* were  excessive after 10 seconds and those for fi were 
excessive after 35 seconds. 
the values computed were meaningless except that they indicated unsatisfac- 

tory control. 
polation in the computation of K*M and k M  may be a partial cause of the 
unsatisfactory nature of the controllers. 
factory control are believed to be that the first and second integrals of the 

The response 

Magnitudes of the covariances w e r e  so large that 

Numerical e r ro r s  introduced by matrix inversions and inter- 

But, the major causes of the unsatis- 

linear accelerometer signals and the attitude signals a t  stations 1541 and 2686 
were  not included in the measurement vector and that the columns of M 
corresponding to the wind states, UJ and x, and the internal load distribution 
state, x3 were zero. 
described below. 

This conclusion is based on the results of the analyses 
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C ontrolle r Simplification Analyses 

Since the analytical measures of quality proved to  be unsatisfactory, a 
series of experiments was  performed to attempt to identify the states which 
must be measured 9r estimated to achieve good performance. In the following 
description of the series of experiments performed, the cost associated with a 
particular response is an upper bound for the likelihood that the particular 
response exceeds its limit, and the total cost is the sum of the costs for all 
responses included in the performance functional. 
used in these experiments. 

The corrected model was  

The first experiment was  performed to determine the importance of the 

(11, x, and x3 feedbacks, since these three states cannot be measured. In this 
experiment the performance of the controller obtained by using the gains of 
controller A for all states except rii, x, and x3 with the gains for these three 
states equal to zero w a s  computed. The performance of this controller was  
not very good during the time of high dynamic pressure in  that the IB3 cost 
was  large. 
ler, and, since they do not explicitly appear in any sensor output, an estimator 
for these states is required. 

Thus, it appears necessary to include these states in the control- 

The second experiment was  performed to determine the significance of the 
wind states. 
troller A for x3. 
the controller in the previous experiment. The cost for IB3 in the interval of 
high dynamic pressure was  larger than in the first experiment and there 
were  significant costs for p and k at burnout. 
significant degree of coupling of wind and load-distribution states. 

The above controller was  modified by adding the gain of con- 
The performance of this controller was worse than that of 

These results demonstrate a 

These two experiments demonstrate very clearly that the optimal controller 
for a fixed form of feedback is not, in general, the controller defined by the 
least-squares approximation to the optimal gains. 
required to be of the form 

That is, i f  the controller is 

u(t) = K(t)M(t)x(t) (4.21) 
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where M(t) is fixed, then the controller corresponding to k(t;I, M(t)) defined 
by (4.20) is generally not optimal. 
be considered as fixed-form controllers in that every state except w and x is 
measured; i. e., M is the matrix obtained by deleting the rows corresponding to 
w and x from the identity matrix. Then ?(t; I, M) yields the controller of the 
second experiment. 
twenty times the cost of the controller in the f i rs t  experiment, which is in 
turn greater than o r  equal to the cost of the optimal controller of this fixed 
form. 

The controllers in the two experiments can 

The cost associated with this controller was  more than 

Thus, conclusions reached from this ser ies  of experiments are given sub- 
ject to an awareness that the controller obtained by deleting specific feedbacks 
does not necessarily represent the optimal controller of the fixed form which 
utilizes the remaining feedbacks. 

The third experiment was  performed to determine the degradation in per- 
formance caused by deleting the fuel-sloshing degrees of freedom from con- 
troller A. The contribution of these states to the IB3 response and to an 
estimate of the control at 75 seconds for the system with controller A was  
insignificant, so it w a s  expected that the degradation would not be great. The 
cost at 75 seconds with sloshing deleted from the controller w a s  about one and 
one-half times the optimal cost. 
was a serious degradation in performance in the interval between 140 and 145 
seconds, well beyond the interval of high dynamic pressure. 
formance late in the flight is one of the many results of the experiments for 
which there is no clear explanation. Clues to the cause of this particular 
phenomenon a r e  the behavior of the optimal gain on the third sloshing mode 
displacement, which has a slight peak in this interval, and the fact that the 
third slosh-mode frequency has crossed over the first flexure-mode frequency. 

This is not a severe degradation, but there 

This poor per-  

The drift makes no contribution to bending moment and its contribution to 
The purpose of the fourth experiment was  to determine the control is small. 

the performance of the controller with this state and the fuel-slosh states 
deleted from controller A. 
caused by deleting drift. 

There was  no noticeable change in the performance 
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The contribution of the second flexure-mode displacement to controller A 
a t  75 seconds was  small, and although this state did contribute significantly to 
the IB3 response at 75 seconds, this state and the fuel-sloshing states and 

drift were deleted from controller A in the fifth experiment. In comparison 
to rhe previous experiment, the performance of this controller showed a slight 
degradation during the interval of high dynamic pressure and nine orders of 
magnitude improvement in the cost in the interval between 140 and 145 seconds. 

The sixth experiment consisted of deleting the third-flexure mode displace- 
ment from the controller in addition to the states deleted in the fifth experi- 
ment. The purpose was  to determine the significance of this highest- 
frequency mode. 
of this controller displayed a slight improvement during the interval of high 
dynamic pressure, but extreme degradation for the interval between 110 and 
150 seconds. 
almost certainty for the likelihood of mission failure. The differences in the 
performance of this controller and the controllers of the two previous experi- 
ments in the interval between 115 and 150 seconds a r e  an indication of signi- 
ficant coupling of the high-frequency modes in this interval. 

Ln comparison to the previous experiment, the performance 

In this latter interval the costs were greater than one indicating 

The contribution of the wind-filter state, x, to bending moment was  zero 
and its contribution to controller A at 75 seconds was  small. 
the seventh experiment which consisted of evaluating the performance obtained 
with this state deleted from the controller of the fifth experiment. 
no significant difference in the performance between this controller and that of 
the fifth experiment. 
in performance caused by deleting this state from the control. 

This motivated 

There w a s  

This demonstrates that there is no serious degradation 

The controller for the eighth experiment was  obtained by deleting the inter- 
nal-load-distribution state, x3, from the controller of the previous experi- 
ment. 
contribution to controller A at 75 seconds was  significant. This controller 
exhibited very good performance during the interval of high dynamic pressure. 
In fact, its performance there was  better than that of controller A. But, the 

The contribution of this state to bending moment w a s  zero, but its 
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performance at burnout was  rather poor. 
x is quite important; however, the underlying relationship of this feedback to 
controller performance is not understood. 

This indicates that the feedback of 

3 

The ninth experiment was  conducted to determine the effect of complete 
removal of the second flexure degree of freedom in addition to the fuel-slosh 
degrees of freedom and the dr i f t  state. 
the same as in the fifth experiment except that the second flexure-mode rate 
feedback was  deleted. 
than that of the fifth experiment in the interval of high dynamic pressure, but 

not enough to represent a serious degradation. 

The controller for this experiment was  

The performance of this controller was somewhat worse 

The final experiment consisted of deleting the third flexure-mode rate and 
This displacement feedbacks from the controller of the previous experiment. 

experiment was  conducted to determine the significance of the third-mode 
degree of freedom. 
unsatisfactory for t - > 70 seconds. 
cant role of the high-frequency dynamics in the performance of the controller. 

The performance of this controller w a s  completely 
This is a further indication of the signifi- 

The conclusions reached on the basis of these experiments are: 

0 

0 

0 

The states w and x3 should be estimated. 

Feedback of the fuel-slosh states is not necessary, 

The highest-frequency flexure mode is very significant. 

Simplified Controller 

The experiments described above indicate the necessity of including 
measurements o r  estimates of the wind state, UJ, and the load-distribution 
state, x3, in the controller. Since these states do not contribute directly 
to any sensor output, their inclusion in the controller can only be achieved 
with an estimator. Such an estimator w a s  derived from the following con- 
siderations. 

40 



The states associated with rigid-body and flexure degrees of freedom can 
be measured by means of integrals of five accelerometer signals as shown 
above. The load-distribution states, x1 and x2, can be measured by linear 
combinations of two accelerometer signals and the rigid-body and flexure 
states, assuming the fuel-slosh states a r e  zero, In fact, the fuel-slosh 
states do contribute to the measurements of x and x 1 2' 
appears to be negligible for 40 - -  < t < 125. 

but this contribution 

1A' 
and x3* denoting stations 1541, 2686, and 3240 inches respectively. X2A' 

Let m9 denote the output of an angular accelerometer at station 3240 inches, 
and let ml0 denote the output of a lateral  accelerometer at station 2686 inches. 
From the state equations and equations (4.4) and (4. 5), the following equation 
may be obtained: 

Let ml, . . . , m8 be defined as in the General Considerations with x 

(4.2 5) 

. .  
Let < denote mg minus the known contributions to m9 from 6, z, qiJ cp, z, qi, 
and B .  Similarly define Then 10' 

with M* nonsingular except at t = 0. 
0.08 for 40 5 t - < 125. Thus (M*)- 'h9,  mlo)T is assumed to be a fairly 
accurate measurement of (xl , x2)T during this interval. 

The elements of (M*)-lM** a r e  less  than 
N 

Assuming noisy measurement of the states, x1 and x2, an estimator can 
be derived for states, xl, x2, x3, w and x. The estimator is designed on the 
assumption that M** is zero, but the performance of the controller with the 
estimator is determined with the actual M**. That is, the estimator is 
designed on the basis of the equations (assuming for simplicity = 0). 
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- -  
il 
X . 
x1 

x2 

x3 
- -  

A 

A 

+ D4% (4.27) 

where B44 is ob-ained by delewing the first row and column from B 

Appendix B and D4 is the last 5 rows of D4 of Appendix B and S1 and 5,  are 
independent white noise inputs. 

of 
A 44 

This yields estimator equations 

A 

= CB44 - LM] 

- 
0 + L ~ ~  .--[. 0 0  M*c 

(4.28) 

where L denotes the estimator gain matrix which is obtained from the differ- 
ence equations 

- A t  L (n) r M (n) $(n)M(n) A t  + W2 (n) ] L(n) (4.30) 

A 

g(0) = g(0) where X(0) is the lower right-hand 5 x 5 submatrix of X(O), and 

W1 = E[q2], W2 = E[S SI], and W3 = E[Sql. In place of the above estimate, 
the estimate obtained with $9 and $ 

obtain an estimate of the Kalman form satisfying 
replaced by gg and is used to 10 10 
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A 

= [B44 - LM] + L  

r 1 7 1  

- 
N 

“9 

“1 
N 

- 

Z sl’ Z s2’  zs3’  

(4 .31)  

Redefining the state vector x to consist of 27 components, the first 22 being 
the original state vector and the last 5 being yl, y2, y3, y4, and y5 in that 
order, the control vector associated with the resulting system is 

A controller was designed for the corrected model in the manner just 

described with Erg S f ]  = [o 1 0  1] E[v2] and ECsql = [ ~ ] .  The quality 

of the estimates obtained was  very poor. However the controller yielded fairly 
good performance. The total cost was  associated with the IB3 response during 
the interval of high dynamic pressure. In view of the poor quality of the esti- 
mates obtained and the results of the seventh and eighth experiments, it is 
believed that the performance of this controller could be improved by modify- 
ing the gains for the estimates of the states, x and x3. 
money limitations precluded investigating this possibility, 

However, time and 
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SECTION V 
QUANTITATIVE RESULTS 

This section presents summaries of the numerical results generated in the 
optimization with complete measurement and sensor choice and controller 
simplification calculations. The performance of the controller is described 
as the sum of response costs. 
likelihood of the response exceeding its limit. 

Such a response cost is an upper bound on the 

Optimization 

The iteration procedure described in  Section III was  used to design con- 
troller A for the incorrect model, assuming complete measurement capability. 
Eleven iterations were required. The sample time employed was 0.02 second. 
The terminal constraints were met satisfactorily by the third iteration and the 
significant response was the IB3 response during the interval of high dynamic 
pressure. 
fourth iteration; this produced a reduction of about 4 percent in  the IB3 cost. 
The weights for the fifth iteration were chosen to be the same a s  for the fourth 
iteration with the exception that the weight on IB3 was  increased by a factor of 
5. This produced a reduction of about 2 percent in the iB3 covariance at the 
expense of more than doubling the IB3 covariance and an increase of two orders 
of magnitude in the IB3 cost. 
tions in the weight on IB3 with the other weights unchanged. 
formance was  obtained at each iteration. 
moment-rate responses were reduced in the ninth iteration with an accompany- 
ing improvement in performance of less than 10 percent. 
consisted of increasing the weight on IB3 at 75 seconds by three orders of 
magnitude; this produced an  improvement in performance of less than 10 per- 
cent. The weight on IB3 at 75 seconds was  reduced by a factor of two and the 
peak of the time varying weight on IB3 was  narrowed in the eleventh iteration. 
This produced an improvement in performance of approximately a 1 5  percent 
reduction in cost. 

The weight on IB3 was increased by two orders of magnitude in the 

The next three iterations were consecutive reduc- 
Improved per- 

The weights on each of the bending- 

The tenth iteration 

The cost corresponding to this controller w a s  1.9-  IO-^, 
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and this controller, designated as controller A, was  accepted as the 
"optimal" controller. 

Optimization was  performed with this last set  of weights using a sample 
time of 0 .01  second to determine the effect of sampling. The controllers 
derived for the two sample times were qualitatively the same. The value 
of the performance functional obtained with the 0.01 second sampling was  
approximately one-half the value obtained with the 0.02 second sampling. 
The major differences in the gains for the two cases were those associated 
with the highest-frequency fuel-slosh and flexure modes, Q3 and K; 3, and the 
gimbal deflection gain, K 
gain changes indicate the significance of the high-frequency dynamics in the 
control problem. 

during the interval of high-dynamic pressure. These 8' 

The above results a r e  summarized in Tables 1, 2, and 3 .  The quadratic 
weights a r e  shown in Table 1. Peak values of mean responses and response 
covariances a r e  given in Tables 2 and 3 respectively. The bending moment 

equations (2.11) used in the above iterations was in e r ror .  
equation 

The erroneous 

was  used in place of the correct equation 

1 .. MJ 3 
k + M ' f I - - - ' @ +  C M . . q i  = Ma"p - - % 

i=l q i  b o  V 8 V I (X ) 

dx + J- dt C(x-xcg)y1 + y 2  + (xo-x) x (xO-x)l 7 vW 

da 

The erroneous bending moment was  overly dependent on pitch rate, and this 

dependence increased with time because velocity increases with time. 
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The e r r o r  was  discovered during the course of simplifying controller A. 

The upper bound 

After the e r r o r  was  discovered, the performance of controller A was  re-  
evaluated with the corrected bending moment expression. 
associated with the covariances for the correct model was  about 0.4 times that 
for the incorrect model. The cost with an adjusted deterministic input and the 
mean input is about 1.02 times the cost produced by the covariances only. 

Optimization with the correct model and the weights from the eleventh 
iteration yielded a controller, which wil l  be denoted as  controller A’, with 

higher cost, but the cost was almost wholly due to gimbal deflection at burnout. 
One more iteration was performed in which the weights on gimbal deflection, 
and gimbal rate at burnout were increased by a factor of ten. The resulting 
controller, which will  be denoted controller B, yielded the lowest value ob- 
tained for  the upper bound. The cost of approximately l o B 6  for controller B 
was again almost wholly due to gimbal deflection at burnout, and this could 
undoubtedly be reduced by further iterations. However, in view of the small 
value of 8-  

failure with controller A, it was decided that the time and money remaining 
could be used more effectively in simplification analysis of controller A for 
the correct model. 

obtained for the upper bound on the likelihood of mission 

The adjusted deterministic input was  obtained as follows. It was assumed 
that the mean response with controller B was  the desired mean response for 
controller A with the adjusted deterministic input. 
controller B wi l l  be achieved i f  the mean gimbal angle T(t), is equal to the 
mean gimbal angle (t) for controller B. Since p(0) is zero for any con- 
troller, the mean gimbal angles wil l  be equal i f  F(t) is set  equal to $,(t). Now 

The mean responses of 

- 
B 

for controller B, and 

- A -  - 
k(t) = 11.9(K x - fI + f )  
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for controller A. Setting 
adjusted deterministic input 

and T equal to FB and xB respectively yielded the 

A -B f = ( K B - K  ) x  + f B  

The optimization results for the correct model are summarized in Table 4. 
The standard deviations of angle of attack, pitch rate, pitch attitude, drift 
rate, drift, gimbal angle, and IB3 are given in Figures 1 through 7 for con- 
trollers A and B. These figures display the significant difference in the 
character of the two controllers. 
played in Appendix D. 

The gains for the two controllers are dis- 

In comparison to controller B, controller A permits larger angle of attack, 
maintains smaller pitch attitude and pitch rate with smaller gimbal deflection 
during the interval of high dynamic pressure, and produces larger bending 
moments. A l so  the control activity to meet the terminal constraints is much 
less for controller A than for controller B. 

Quality of Sensor Complements 

The first measure of quality was  tested on only the sensor complement 
described in the Controller Simplification Analysis of Section IV with the 

erroneous model. The performance of the controller was  so bad that no 
quantitative results of value w e r e  obtained. 
not affect the states, using the corrected model would not significantly 
change the above results. 

Since the e r r o r  in the model did 

The second measure of quality was  evaluated for a set of rate outputs and 
their integrals. The following six pairs of sensor outputs were considered: 

2. + (65.7 - x )& + Yi(65. 7)ii, z + (65.7 - x )cp + C Yi(65. 7)qi 
cg cg 
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3. B + (80 - x >rT, + P Yi(8O);li, z + (80 - x 
cg cg 

) ~ p  + C Yi(8O)'pli 

4. 6 + C Yi ' (36 .  5)fi, cp + C Yi '(36. 5)'pli 

Only the gains associated with 6, 6, 4. cp, z, q. can be approximated given this 
set of outputs, s o  the weighting matrix was chosen to give equal weights to 
these components of the difference, K N I - e ,  and zero weights to the others. 

The evaluation was  performed only at t = 80 seconds. The results are given 
in Table 5 for all combinations of sensors taken one, two, three, four, and 
five at a time, 

1' 1 

This quality measure does not appear to be adequate since it fails to 
incorporate the known significance of the signs of gains. F o r  example, the 

i2, z and q2 in KM are opposite in sign to the gains of controller gains on f 
A in the best set of four pairs, the pairs 2, 3, 4, and 6. Also, equal weighting 
of e r ro r s  does not take into account the differences in magnitudes of the gains 
of controller A. 
but this raises the question of what is the best weighting matrix. Time did not 
allow investigation of this question. 

h 

1' 

This could be remedied by modifying the weighting matrix, 

Controller Simplification 

Experiments were performed to determine the degradation in performance 
caused by deleting the feedback of certain states from controller A. These 
experiments performed originally with the erroneous model, indicated that 
exclusion of the fuel-slosh displacement, fuel-slosh rate, drift, second 
flexure-mode displacement and rate states from the controller caused only 
minor deterioration during high dynamic pressure. 
obtained for the correct model indicated that W and x3 feedbacks made significant 

The experimental results 
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significant contributions to control. Qualitative descriptions of the experi- 
ments are given in Section IV. 
model follow. 

The quantitative descriptions for the correct 

1. 

2. 

3. 

4. 

Controller: 

Total cost = IB3 cost + k(T) cost = 0.88 + 0.01 
IB3 cost significant only for 70- 8 5 seconds. 
The motivation for this experiment was  the fact that these gains were  

Kw = Kx = K = 0, other Ki = Ki A . 
x3 

zero in both K*M and k M .  
c anno t be dis r e  gar de d . 

The conclusion drawn is that these states 

A Controller: Keel = Kx = 0, other Ki = Ki . 
Total cost = [3 cost + IB3 cost + k cost + a cost = 1.293 + 0.472 + 0.165 + 

0.026 
B cost significant only at 160 seconds. 
IB3 cost significant for 70-90 seconds. 
This experiment was performed to determine the significance of the wind 
states only. It demonstrates a significant degree of coupling of wind and 
lo ad - distribution stat e s . 

A Controller: Kk = K, = 0, other Ki = Ki 
s j s j 

Total cost = f3 cost + IB3 cost = 0.071 + 0.001 
@ cost significant only for 140-145 seconds. 
IB3 cost significant only for 75-80 seconds. 
It was  suspected that fuel-sloshing was  of little significance during high 
dynamic pressure in the controller since these modes gave an insignifi- 
cant contribution to the control. The supposition was  confirmed. The 
drift contribution to the control was  also small, which motivated experi- 
ment 4. 

A = KZ = K = 0, other Ki = Ki - - 
Kzs j 72 

Controller: K; 
s j 

No significant change from 3 occurred. 
The q2 contribution to the control was  also small, which motivated 
experiment 5. 
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A 5. Controller: Kk = KZ = KZ = K = 0, other Ki = Ki 
s j  s j q2 

Total cost = IB3 cost = 0.00143 
IB3 cost significant only for 7 5-80 seconds. 
IB3 cost for 75-80 second interval was  approximately 1.75 times the 
corresponding cost for controller A with complete feedback. 

A 6. Controller: Ki = KZ = KZ = K = K = 0, other Ki = Ki 
s j  s j '12 q3 

Total cost = 960, indicating the significance of the third bending mode to 
the controller. 
and IB1 costs and these costs occurred in the interval from 11 5-1 50 

seconds. 
third be'nding mode late in the flight. 

The major contributions to the cost were the IB3, 8, IB2, 

This demonstrates the major significance of the high-frequency 

A 7. Controller: K; = KZ = KZ = K = Kx = 0, other Ki = Ki 
s j s j q2 

No significant change from 5 occurred. 
ment was that the contribution to the controller of the wind state x was  
small. 

The motivation for this experi- 

A 8. Controller: K; = KZ = KZ = K = Kx = Kx = 0, other Ki = Ki 
s j s j q2 3 

Total cost = B cost + 
f3 cost significant only at 160 seconds. 
This experiment was performed because the load distribution state, x3, 
cannot be measured directly, and this state does not contribute directly 
to the bending moment responses. The relation of the feedback of x3 to 
controller performance is not clear. 
moment response was  reduced sharply from the corresponding response 
in the previous experiment. In fact, the IB3 cost of 0.150 
experiment was  much lower than IB3 cost of 8.0. 

troller A. 

cost + a cost = 0.0243 + 0.0003 + 0.0003 

In this experiment each bending- 

for this 
produced by con- 



, 

9. 

10. 

Total cost = IB3 cost = 0.0196 
IB3 cost significant only for 70-85 seconds. 
IB3 cost for 70-85 second interval was  approximately 37 percent greater 
than the corresponding cost in the fifth experiment. 

A Controller: K i  = KZ = K, = K = K O  = K = K *  = 0, other Ki = Ki 
s j s j q2 q2 73 q3  

Total cost = IB3 cost + IB2 cost + 13 cost + IB1 cost = 875 + 780 + 748 + 701 
The response covariances were excessive after 70 seconds. The value of 

[ IB3 covariance] / (IB3mX )2 at 75 seconds was  3.98 and at  160 seconds 
was 4.160 lo1  ’. 

The response covariances a r e  summarized in Table 6. 
troller definitions KA denotes the gain vector for controller A.  

In the above con- 
The remarks 

on significance of costs given above are with respect to the total cost. 
simplification analysis of controller B was  limited to determining the degrada- 
tion in performance caused by deleting the fuel slosh, fuel slosh rate and d r i f t  

feedbacks. The controller with these feedbacks deleted exhibited very poor 
performance; it produced a total cost of 91 1.9 consisting of contributions of 
444.7 for 8, 57.2 for IB1, 80.0 for IB2, 327. 5 for  IB3, 0.998 for a(160), 
0.996 for k(160) and 0. 57 for ~ ( 1 6 0 ) .  
75 seconds. Thus, in contrast to controller A, these feedbacks very signifi- 
cantly affect the performance of controller B. 

The 

The responses were unsatisfactory after 

Simplified Controller 

A simplified controller was  designed based on the rationale given in 
Section IV. It was  assumed that the rigid-body and the flexure states could 
be measured, and an estimator was  designed to estimate the wind and load 
distribution states. The control input consists of feedback with the gains of 
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controller A for the rigid-body and flexure states except that the z and Q~ 
gains were set to zero and the output of the estimator times the gains of con- 
troller A for the estimated states. 

1 The estimator was  designed with the assumptions that E{g 51) = 10 
E{q? 6 9 and E{Sql) = E] where 5 is the noise vector associated with the 
measurements, equation (4.27) and q is the noise input to the wind filter, 
equation (2.13). 

The estimator gains are shown in Figures 8a and 8b. Figure 9 shows the 
normalized e r ro r  variances of the estimates of the wind states for the estima- 
tor  defined by equation (4.28). 
distribution states are almost identical to the normalized e r ro r  variance of w 

shown on Figure 9. 

estimates is very poor. 

The normalized e r ror  'variances"df the load 

It is evident from this figure that the quality of the 

The controller exhibits fairly good performance considering the quality of 
the estimates obtained. The total cost is 0.0173, and this cost is c 
due to the IB3 response during the interval from 70 to 85 seconds. 
response covariances for this simplified controller a r e  summarized in Table 6 

for comparison with the results of the experiments. 

The 

It is believed, in view of the results of experiments 7 and 8, that the per- 
formance of this controller could be improved by setting the gain on the 
estimate of the wind state, x, to zero and modifying the gain on the estimate 
of the load-distributionstate, X 

sure.  
during the interval of high dynamic pres- 3' 

...L. . .. . 
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SECTION VI 
CONCLUSIONS AND RECOMMENDATIONS 

The first goal of this investigation was  reached by demonstrating the appli- 
cability of the stochastic optimization theory to a vehicle model containing 
flexure and fuel slosh dynamics. The overall goal was only partially reached 
by demonstrating that the controller produced by the optimization theory could 
be simplified to a physically realizable, practical controller. The second 
goal was not met in that no satisfactory technique was  developed to determine 
the minimum number of sensors, the kinds of sensors, and the sensor loca- 
tion required for good controller performance. Some insight was gained on 
the question of sensor choice and location, but a complete answer was  not 
obtained. 

The specific conclusions and recommendations for future study in the areas  
of optimization, sensor choice, and controller simplification a re  presented 
below. 

Optimization 

Opt,mization with complete measurement capability was  easily per,mmed 
for the model vehicle studied using essentially a direct iterative procedure on 
the quadratic weights. N o  attempt w a s  made to achieve complete convergence 
in  that iterations were stopped when a satisfactory controller w a s  obtained. 

Improved convergence of the iterative procedure could probably be 
achieved using results privately communicated to Dr .  G. B. Skelton from 
Prof. J.Y.S. Luh and Mr .  M. Lukas of Purdue University. The iteration 
procedure described in  Section 111 would be modified as follows: 

a) Find initial Ro and S matrices corresponding to an initial controller 
obtained by application of the quadratic theory to minimize J** with 
an initial choice of Q and V matrices. 

0 
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3f 3f 
3R 3s Given Ri and Si compute the matrices - and - evaluated at 

R = Ri, S = Si. 

af Set Qi = 

application of the quadratic theory, 
and V = - and find the minimizing control for J** by 3R 

Compute the corresponding R and S matrices and denote them by 
A 

and Si. 

I 

+ f,[hSi(t) + (1-X)gi(t), hRi(t) + (l-X)Gi(t)]dt 
0 

and find the Xo E: [0, 11 that minimizes J*(X) for 0 < X < 1. - -  

* 
Set Ri+l = AoRi + (l-Xo)Ri and Si+' + (1-XO)si and repeat steps (b) 
through (e) until condition (3.13) is satisfied. 

For the study vehicle considered there were no significant problems asso- 
ciated with the iterative procedure used. These iterations indicated that the 
terminal constraints could easily be met. The bending moments during the 
interval of high dynamic pressure were the difficult responses to control 
during the iterations, using the model containing the e r r o r  in the pitch rate 
coefficient of the bending-moment equation. 
coefficient, the gimbal angle near burnout became the dominant response 
requiring control. 
capability, but apparently this capability is highly dependent on accurate 
knowledge of the fuel-sloshing motion. 
measuring or estimating fuel-slosh motion could pay great dividends in load- 
relief capability . 

With the correct pitch-rate 

The resulting controller exhibited remarkable load-relief 

Thus, developing a means of accurately 
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Sensor Choice 

The analytic measures of quality defined in this study and discussed in 
Section IV were not satisfactory means of predicting the quality of sensor 
complements for control purposes. These measures of quality were based on 
the premise that the optimal controller for any given sensor complement with 
which satisfactory performance could be achieved would closely approximate 
the optimal controller using complete state feedback. This apparently was  
not true for the sensor complements considered. 

The first measure of quality was  evaluated for only one sensor complement 
with such dismal results that it was  not investigated further. In retrospect, 
this was not a fair evaluation of the measure because all of the information 
available from the sensor complement w a s  not utilized; that is, the integrals 
of some of the sensor signals were not included in the measurement or  
observation vector. 
integrals had been included in  the measurement vector. However, the 
question of whether the basic premise upon which the measures of quality were 
derived is true o r  not could not be answered in the present study. 

Better results could probably have been obtained if these 

A method for determining the answer to this question is to solve the opti- 
mization problem with the controller constrained to be a linear controller 
with a fixed se t  of feedback sensors and then compare the resulting controller 
with the optimal controller using complete state feedback. A procedure which 
makes the optimization problem with a controller of fixed form amenable to 
digital computer solution is given in reference 3 .  

Controller Simplification 

The optimal controller with complete measurement capability provided 
insights as to possible controller simplification. 
which made minor contributions to the controller could be neglected without 
causing major deterioration in performance. 
states which directly contribute to the IB3 response. 

Generally those states 

This was  also true for those 
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Empirical results indicate that: 

0 The wind state, W, and load-distribution states are significant 
backs and probably require estimation for good controller perform- 
ance. 

0 The fuel-slosh and second-flexure-mode degrees of freedom and the 

drift feedbacks may be simultaneously deleted from controller A 
without severe deterioration in performance. 

The simplified controller which involves a fifth-order estimator and 
the outputs of five accelerometers and their integrals gives fairly 
good performance in spite of rather poor quality estimates. 

0 

It is believed that the performance of this simplified controller could be 
improved and that the controller could be further simplified with more simu- 
lation studies. 
experimentation, and it is recommended that an  analog or hybrid simulation 
be utilized in controller simplification studies 

However, digital simulation is a very expensive means of 

A basic question which became evident but was unanswered from this 
analysis is: What interaction in the form of coupling or cancellation takes 
place between particular state feedbacks ? The existence of such interactions 
was clearly demonstrated between the wind states and a load-distribution state 
and between fuel-sloshing states and the second-flexure-mode states. One 
way to seek the answer to this question is by costly simulation analyses. 
Another approach which may be fruitful is to utilize frequency domain analysis 
techniques for constant coefficient representations of the model at particular 
times during the launch interval, since these techniques can provide informa- 
tion concerning interaction that is difficult to obtain from time domain analy- 

sys techniques. 

In summary the fundamental goal of the sensor choice and controller 
simplification approach was not reached. Although, for the study vehicle 
considered, this investigation did lead to a practical simplified controller, a 
general technique was not developed. It is felt that the analysis performed 
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did give some clues  but did not give a complete answer  to the problems of 
control ler  simplification and s e n s o r  choice. Techniques descr ibed in this 
sect ion are suggested for fur ther  s tudy of these problems. 
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APPENDIX A 
DISTRIBUTED AERODYNAMIC LOADING APPROXIMATIONS 

This appendix presents the distribution of aerodynamic forces along the 

length of the vehicle and the approximations of the distributed loading used in 
this study. 
developed in reference 1. The major changes consist of a modification of 
the formulae for the side force per unit length per unit angle of attack, because 
of the different vehicle used in this study, and incorporating distributed 
effects in the flexure modes. 

The model developed here is a modification of the model 

A s  stated in reference 1, the objective is to develop a model that wil l  
yield qualitatively correct trends for the study. The model is the simplest 
that can be conceived, and results obtained from synthesizing controls for the 
model should be interpreted with caution. 

Formulae for the estimated side force per unit length per unit angle of 
Then the derivation of the coefficients for dis- attack a re  presented first. 

tributing wind effects is described. 

Approximation of dr/da 

r 

"Model Vehicle No. 2 for Advanced Control Studies". The Saturn V/Voyager 
with a 45-foot length shroud is assumed to differ from Model Vehicle No. 2 
only forward of station 63.97 meters. 
for x < 63.97, namely: 

A n  approximation of dT/da is derived in Appendix C of reference 1 for 

Thus the same approximation is used 

-- ld' = 21.223 - 2 . 4 5 ~  0.63 5 x<, 1.63 

1 . 6 3 c x C 2 . 5 4  - 
q da 

= F1 (9.17, M, x) 

= F1 (19.22, M, x) 2.54 < x - < 3.14 
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= F2 (M, x) 3 . 1 4 < x < 5 . 0 5  - 

= 21.6056 - 2 . 4 5 5 ~  5.05 < x - < 8.32 

= 1.1850 8.32 < x ( 6 3 . 9 7  

where x denotes distance in meters along vehicle measured from a point 2. 54 
meters behind the engine gimbal location, M denotes Mach number, q denotes 
dynamic pressure in kglm , a denotes angle of attack in radians and 2 

M < 5 1 2  
2 -112 

F1(C,M,x) = 4 C ( l - M  ) 

5 / 2 Z M s  ,612 Js- .K 1 
J- 4 

M2 - 1 
c M 1 - (3.14-x) 6 1 2  < M - - 

-112 
= 4(31.26-3.805~) (l-M2) M <  5 1 2  

= 8(31.26-3.805~) 6 1 2  < - M - < 6 1 2  

The following estimate for the forward section of the vehicle was  obtained 
using the method described in reference 1: 

63.97 < x - < 69.70 32 2 1 dT 
= (80.67-x) - sin O 2  cos - -  

(4 3 

69.70 < x < 96.46 - = 0.2477n 

96.46 < x < 100.7 - 
32 2 = (114.2-x)- sin e l  cos 
3 

100.7 < x < 105.0 - 
32 2 

= (105.0-x) - sin 8, cos 8, 
3 
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68 
0. 57(396) and tan o2  = 25 31 

0.42(396)’ where  t an  8 = -  43 t an  q1 = 
0 

The estimates above w e r e  not consistent with the data given in Figures 14- 
18 of reference 4. 
forward  of 63.97 meters was  changed to 

To obtain better consistency with this da ta  the estimate 

63.97 < x - < 69.70 - 32 2 1 &  

q da 3 
- -  - (80.67-x) - sin O 2  cos q 2  + 7.0 

89.92 < x < 96.46 - = 5.0 + 0 . 2 4 7 7 ~  

32 
96.46 < x < 100.7 z - = (114.2-x) - s i n  Q1 cos f j l  + c( t )  

3 

100.7 < x - < 105.0 32  2 
= (105.0-x)- s i n  9 cos e 

0 0 3 

where  Bo, 
wise.  

€I2 are unchanged and c(t)  = 1 2  f o r  60 < t < 70 and c(t) = 7 other- - -  

Distributed Load Coefficients 

The  integrals to be approximated are of the form 

and the approximations are obtained by setting 

A 3  



where xN denotes the length of the vehicle and hl(r)  and h2(r), the impulse 
responses of a first-order filter and a second-order Pade type filter, a r e  
given by 

1 jw 1 
hl(r)  = - esr ds, 

2rrj - 3 ”  sxl+l 

and 

1 -w - 5x2s +6 
h2(r) = - r esr d s  

2nj - “ j m  2 (X2s) +4X2s+6 

Then 

, - V d“ V 

d r  d r  
f N  h2( rV)  v,,,(xN, t-r) - 

V V + a 2 i  
- - JxN h l ( rV)  vw(xN, t-r) - “2i-1 

Thus the coefficients a 
2i-  1 

cg’ 
where g = 1, g2 = x-x 
Y 
bending moment responses a r e  being considered. 

(t), a2$t) must be determined for i = 1, 2, . . . , 8 
83 = Y,(X), 84 = y2(x)J  85 = y3(x)J g5+j - - (x-xcg) 

1 + y 2  + (x.-x) x(x.-x) for j = 1, 2, 3 and x .  denote the locations for which 
3 3 3 

First, the coefficients were normalized by requiring 

a1 + a2 = N 
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a3 + a4 = N.4 
CP 

a3+2i a4+2i = N e ,  vi i = l , 2 , 3  

a 9+2j fa10+2j = M a, '(x.), J j = 1, 2, 3 

where the terms on the right are the steady aerodynamic terms. This 
normalization is intended to enforce consistency with the data for constant 
loading, i. e , 

X XN [a,h,(x) + a2h2(x)] dx = N since / Nhi(x) dxw 1. 

0 0 

XN dT 
The integrals, wi(x, t) = 

ponding a2i-l(t) and a2i(t) w e r e  chosen so that 

gi(yJ t) dy, were computed and the corres- 
X 

approximated wi (x, t) qualitatively. 
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APPENDIX B 
COEFFICWNT MATRICES 

The coefficient matrices for the continuous state and response equations 
a r e  presented in this appendix. Certain properties of these matrices are also 
derived. 

For simplicity in displaying the results the state vector and coefficient 
matrices wil l  be partitioned as follows: 

x =  

A =  

C =  

i], X 

1 
X 

c2  

c3 
, D =  

B =  

, E =  
E3 

IE4- 

3 -  x -  

B1 



where the A..  B.. C D E. are of appropriate dimensions to be consistent 
with the partitioning of x. Also  set 

if ij’ i’ i’ 1 

N r =  

and 

Hi = 

where r 
-l = ~] 

i i i i 

i i i i 

i i i i 

H1l H12 H13 H14 

H21 H22 H23 H24 

H31 H32 H33 H34 

Lz 1 

i 
jk 

for i = 1, 2 with H 

N N N 

of appropriate dimensions and partition C and E in the form C = 

- -  
N 

c1 

c2  

c3 

cy 

N 

- -  

, E =  

With In denoting the n x n identity matrix, A and B may be written as 

A =  

0 

0 
and B = 

B1l 0 B13 B14 
0 B22 B23 0 

B31 B32 0 0 

0 0 B44 0 

- - 

N 

E2 
N 

E3 

B2 



where 

A12 = 

- - 
A21 

- 
T- /VI  To /VI  

q3 YY T*  /VI 
Ql STS.' n2 STS.' 

71 q2 73 

T* r9 /VIyy NA e p ' vlyy 

N A ~ ~ / M V  N / M V  N* /MV N *  /MV NO /MV 

T* /MIV N *  /MIV (N: /M1V)-2C1~1 0 0 

T* /M2V N o  /M2V 0 (Ne / M ~ V ) - ~ S ~ W  2 0 

q l  q1 11 

q2 q2 722 

73 73 q3 3 
T* /M3V N o  /M3V 0 0 (N* /M3V)-2 C3,g 
- 

B3 



B13 = 

- N 

a7 N% N,3 T-D+N 
- 0  3 - - 

M M M M 
0 0 0 

B4 



- 
B22 - 

- 2c s 1 ws 1 0 0 

0 
-25 s2%2 0 

- 25 s3 "s3 0 0 

0 0 

3 2  20 
2 - 

3 0 
- 

- 
B44 - 

-11 .9  0 0 0 0 0 

0 0 0 

0 0 0 

0 0 c3h 

0 -C 5h 

0 uv Ix1 0 -V/X1 0 0 

0 -50v 1x2  0 0 

-C h 4 

UI 

-4V/X2 -6V/X; 
ce, 

0 OV Ix2 0 0 VIX, 0 
(P) 
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The vectors C;, 

0 

0 

0 

(Xl)-l 

- 5(x2)-l  

(x2)- 
- 

- 
c4 - 

1. 

1 1 . 9  

0 

0 

0 

0 

0 
- 

Di, and Ei are all zero for i = 1, 2, and 3. 

- 
0 

c1 

c2 

0 

0 

0 
- 

6 E4 = 

The inverse of A is (partitioned in the same manner) 

-1 - -1 - Thus A C - C, A D - D, A-'E = E and A - l B  is 

0 0 B3 1 B3 2 

0 0 0 B44 

where A = (13-AzlA12)-'. 
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The coefficients in the response equations a r e  of the form 

H1 - 
- 1 1 

H2 1 H23 H24 

1 1 
O H33 H34 

1 0 0 0  

-11 .9  0 0 0 

= Ma'(x2) ! Ma (x3 

H23 

H241 = 

- 
0 0 0 0  

H2 1 2 o  0 0  

0 0 0 0  
- 

where 

0 0  

0 0  ] ' = ~ l . g :  

1 0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

0 

0 0 a13 af4 

a15 "16 
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0 0 

0 

Hgll = 

0 0 0 

0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

H33 l = ~ ~  8 0 0 0 0 : : .J 
0 0 0 0 0 0 

1 -  - 
H34 

0 

~ 

/v OJV 
W 

0 

0 

0 

0 

The only nonzero element of the partitioned H2 is in the first column. But 
the first row of each of the partitioned, C, D, and E and hence of A'lC, 
A'lD and A"E a r e  zero. Therefore, the products H2Am1C, H,A-lD, and 
H,A-lE a r e  zero. Thus 

B8 



To obtain the response equation in the form of equation (2.22) of Section 11, it 
remains to be shown that 

But D1 = D2 = D3 = 0 so the above product is equal to 

'D = B D = 0 which gives the desired result. ButH24 4 14  4 
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APPENDIX C 
DERIVATION O F  THE OPTIMUM FIXED-FORM CONTROLLER 

Given 

k = (F+GIKM)X + X(F+G1KM)I + G2NG2I ((2-2) 

and 

so  that 

S(t) = (H+DKM)X(H+DKM)I (C - 4) 

the problem is to  minimize  J by choice of K, given the 2 equation as a con- 
straint. 

The Hamiltonian for this problem is 

where we have introduced the cos ta te  matrix P, one cos ta te  for e a c h  term i n  

X. The Maximum Pr inc ip le  then leads us to  

3H 

3 p  
-- - 2 = (F+GIKM)X + X(F+GIKM)' + G2NG2' (C - 6) 

aH 

ax 
- -  - -6 = ( F + G ~ K M ) ~ P  + P(F+G~KM) + (H+DKM)~Q(H+DKM) (c-7) 

c1 



3H 

3K 
-= 0 = 2D1Q(H+DKM)XMi + 2G11PXMi (C - 8) 

The latter produces the stated gain equation 

In the launch booster problem, at the final time 

so  the final gain value K(T) has no affect on the cost J. 
condition at the final time then gives 

The transversatility 

(C-11) 

completing the derivation. 

The costate matrix P can be interpreted as measuring the contribution of 
the initial state covariance Xo and the noise covariance G2NGZi  to the cost J. 

With the minimized Hamiltonian equal to zero, there results 

H = 0 = TR[QS+PA] (C-12) 

= TRCQS + P(F+G~KM)X + PX(F+G~KM)I + P G ~ N G ~ I ~  

= TR[ -$X + PG2NG2']  . 
whence 

- d  

d t  
TR[QS] = -TR[PXI + TR[PG2NG2'I (C-13) 

c2 



then 

(C- 15) 

so that 

T 
J = TR[P(T)X(T)] + / (-& TR[PX] +TR[PG2NG211)dt 

0 

T 
= TR[P(T)X(T)] + TRfP(O)X(O)] - TR[P(T)X(T)I + TRCPCZNGZ' Id t  

0 

Further, writing J(t) as the "cost-to-go" 

the above manipulation gives 

T 

t 
J(t) = TR[PG2NG2I]dt + TR[P(t)X(t)] (C-18) 

The ijth term of P(t) may thus be regarded as  a measure of the contribution of 
the ijth term of the noise input G2NG2I to the cost, o r  the contribution of the 
ijth term of the covariance X(t) to the "cost-to-go", providing future noise 
inputs G2NG2 a r e  zero. 
useful for obtaining insights into the physics of the control problem. 

Both interpretations a r e  meaningful and both a r e  

Derivation of Least-Mean-Square-Error State Estimator 

Let x be a vector, and suppose we measure m = Mx. We wish to con- 
struct K and the estimate k = Km such that % is as  close as possible to x. 
To be specific, let us choose K to minimize the mean-square e r r o r  J 

6 3  



5 = TR[E C(2-x) (2-x)' ')I 

= E {C;;-X)' (2-X) ') 

With 

and 

E{x XI} = I 

Then 

J = TR[(KM-I) X(KM-I)'] 

Then 

a J  - -  - 0 = 2(KM-I)XM1 
3K 

(C-19) 

(C-20) 

(C-21) 

(C-22) 

((2-23 

so that 

K = X M I ( M X M ' ) - ~  (C-24) 

Comparing this K with the optimal gain given by equation (C-9) we see  that 
the optimal gain employs a least-mean-square-error state estimator. 
Defining L to be -(Dl1QD1)-l (D1'QH+G1'P), the optimal control is u = Ls, 

With this gain the error covariance is 

(C-25) 

c4 



Noting that for M invertible, 

KM = I 

and 

E{(s-x) (2-x)} = 0 

the states orthogonal to the rows of M (the null space of the domain of M) a re  
not directly observable, and it is these states that make up the error 
covariance matrix. 
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Figure D-la. cp . Gain for Controller A 
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Figure D-lb. cp Gain for Controller B 
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P 

Figure D-2a. 2 . Gain for Controller A 
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a 
ln 

. 
Figure D-2b. 2 Gain for Controller B 
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. 
Figure D-3a. ql Gain for Controller A 
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. 
Figure D-3b. ql Gain for Controller B 
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. 
Figure D-4a. q 2  Gain for Controller A 
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.I 

2.00 II. 00 6.00 8-00 10.00 . 12:oo . 1II:oo 16, 
TIffE SEC (X10 ‘1 

Figure D-4b. qz Gain for Controller B 
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E! 

. 
Figure D-5a. q3 Gain for Controller A 
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Figure D-5b. q3 Gain for Controller B 
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. 
Figure D-6a. Zsl Gain for Controller A 
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Figure D-6b. Zsl Gain for Controller B 
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Figure D- ?a. Zs2 Gain for Controller A 
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0 

. 
Figure D-7b. Z s2 Gain for Controller B 
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2-00 6.w3 8.00 10,oo 16. 
TIME SEC [ X l O  'I 

Figure D-8a. Z s 3  Gain for Controller A 
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a 
Q 

Figure D-8b. Z s 3  Gain for Controller B 
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Figure D-9a. cp Gain for Controller A 
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Figure D-9b. cp Gain for Controller B 
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Figure D-loa. Z Gain for Controller A 
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Figure D-lob. Z Gain for Controller B 
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Figure D- l l a .  ql Gain for Controller A 
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-00 2.00 Y. 00 6.00 e. 00 10.00 12.00 1u.00 16. 
TIHE SEC [XlO 'I 

Figure D-l lb .  ql Gain for Controller B 
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2.00 Y.00 6.00 8.00 10.00 lZ.00 14.00 16. 
TIPIE SEC [ X l O  'I 

Figure D-12b. q2 Gain for Controller B 
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TIHE SEC (310 'I 

Figure D-13a. q3 Gain for Controller A 
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T I E  SEC (XI0 'I 

Figure D-13b. q 3  Gain for Controller B 
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Figure D-14a. Zsl Gain for Controller A 
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Figure D-14b. Zsl Gain for Controller B 
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Figure D-15a. Zs2 Gain for Controller A 
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Figure D-15b. Zs2 Gain for Controller B 
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Figure D-16a. ZS3 Gain for  Controller A 
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Figure D-16b. Z s 3  Gain for Controller B 
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t 

Figure D-17a. @Gain for Controller A 
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Figure D-17b. @ Gain for Controller B 
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Figure D-18a. w Gain for Controller A 
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Figure D-l8b. w Gain for Controller B 
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Figure D-19a. x Gain for Controller A 

D3 7 
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Figure D-19b. x Gain for Controller B 
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Figure D-20a. x1 Gain for Controller A 
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TIME SEC C X l O  ‘I  

Figure D-20b. x1 Gain for Controller B 
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Figure D-21a. x2 Gain for Controller A 
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Figure D-21b. x2 Gain for Controller B 
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2:oo - 6:OO . 1o:oo - 12:oo - 1u:oo 16, 
TIME SEC (X10 'I 

Figure D-22a. x3 Gain for Controller A 
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Figure D-22b. x3 Gain for Controller B 
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Figure D-23a. Adjusted Deterministic Input for Controller A 

D45 



... 

TIME SEC (Y10 ‘I 

Figure D-23b. Deterministic Input for Controller B 
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